



# What is the best hamstring graft configuration for ACL reconstruction? Add an Anterolateral Ligament versus Increase Graft Diameter in Hamstring ACL reconstruction: A Prospective Multicenter Randomized Clinical Trial In High Risk Patients

Carlos Eduardo Franciozi, MD, PhD

*Affiliate Professor Escola Paulista de Medicina (EPM) – Universidade Federal de São Paulo*

*Head of Knee Group – EPM*

*Head of Regenerative Medicine Group – EPM*

*Head of EPO Group*

*Head of EPO Regen Group*

*Advisory Board – Brazilian School of Knee Surgery (BS Knee)*

*Executive Board – Brazilian Society Knee Surgery*

*ISAKOS member*





# Conflicts of Interest

## *Boards:*

*EPO Group - Advisory and Executive Board*

*EPO Regen - Advisory and Executive Board*

*Brazilian School of Knee Surgery (BS Knee) - Advisory Board*

*VRX Tecnologia – Advisory Board*

*Brazilian Society Knee Surgery – Executive Board*

## *Support for education:*

*BS Knee*

*Brazilian Society Knee Surgery*

*Smith & Nephew (ended at 2021)*

## *Consulting:*

*Smith & Nephew (ended at 2021)*

## *Research Grants:*

*FAPESP*

*ISAKOS*



# INTRODUCTION

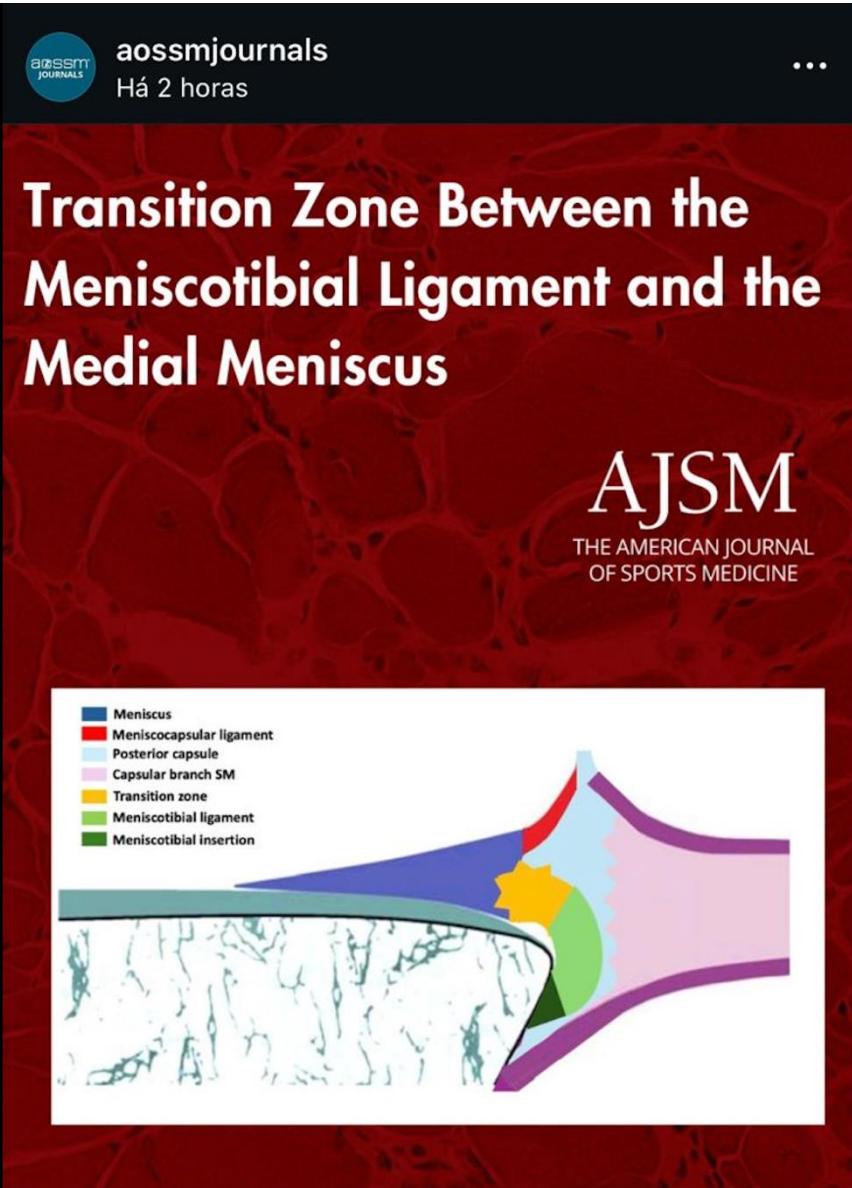
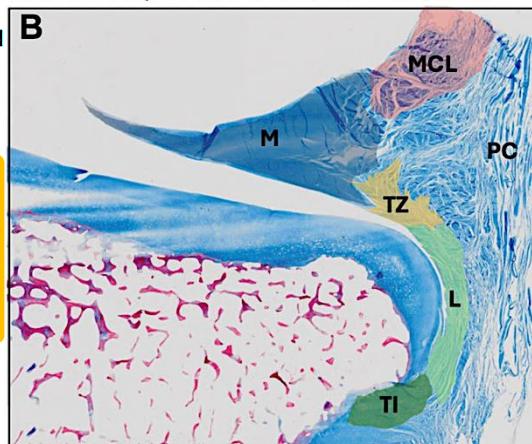
## ACL Hot Topics

# INTRODUCTION

## ACL Hot Topics

### Ramp Lesions

Characterizing the Transition Zone Between the Meniscotibial Ligament and the Medial Meniscus



A Hidden Trigger for Ramp Lesions

Felipe Galvao Abreu,<sup>\*†</sup> MD, PhD , Carlos Eduardo da Silveira Francozi,<sup>†</sup> MD, PhD, Bertrand Sonnery-Cottet,<sup>‡</sup> MD, PhD , Vitor Barion Castro de Padua,<sup>†</sup> MD, PhD, Thais Santana Gastardelo Bizotto,<sup>§</sup> MD, PhD, Marcelo Seiji Kubota,<sup>†</sup> MD, PhD, and Marcus Vinicius Malheiros Luzzo,<sup>†</sup> MD, PhD

Investigation performed at Sao Paulo Federal University-EPM/UNIFESP, Sao Paulo, Brazil

The American Journal of Sports Med  
2026;54(1):52–62  
DOI: 10.1177/03635465251393521  
© 2026 The Author(s)

Transition  
Zone



# INTRODUCTION

## ACL Hot Topics

### Ramp Lesions

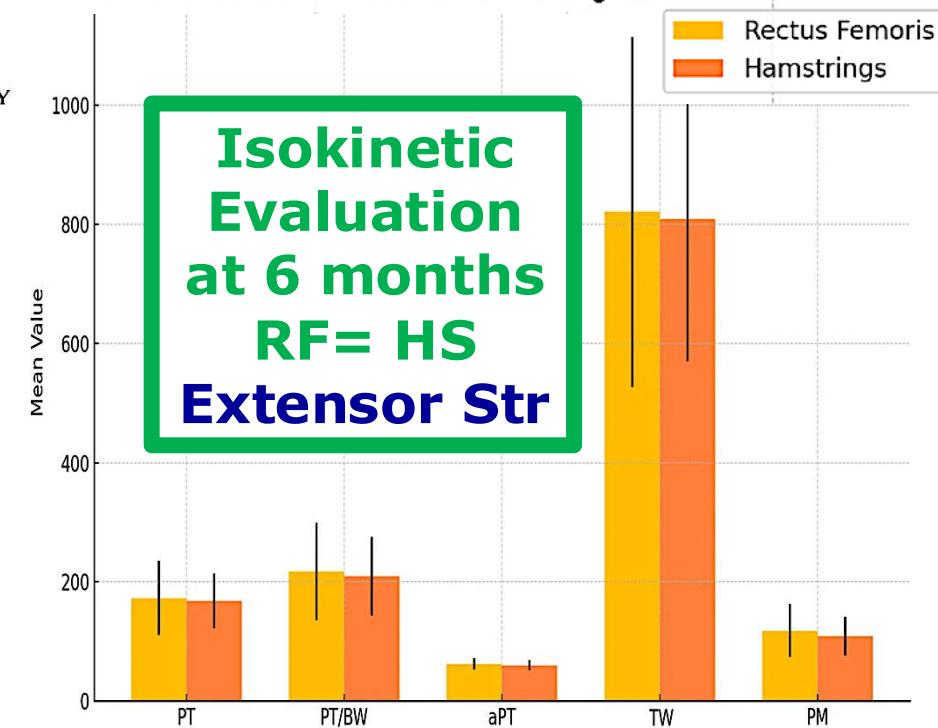
### Rectus Femoris

ORIGINAL PAPER

Journal of Experimental Orthopaedics WILEY

Comparable isokinetic quadriceps performance six months after ACL reconstruction with rectus femoris versus hamstring tendon autografts

Márcio Cabral Fagundes Rêgo<sup>1</sup>  | Alef Cavalcanti Matias de Barros<sup>2</sup>  |  
 Jamilson Simões Brasileiro<sup>2</sup>  | Marcelo Cabral Fagundes Rêgo<sup>1</sup>  |  
 Camilo Partezani Helito<sup>3</sup>  | Carlos Eduardo da Silveira Franciozi<sup>4</sup>  |  
 Diego Ariel de Lima<sup>5</sup>   |


Received: 30 September 2025

Accepted: 12 November 2025

DOI: 10.1002/jeo.2.70601



Isokinetic Knee Extensor Strength: RF vs Hamstring



# INTRODUCTION

## ACL Hot Topics

### Ramp Lesions

### Rectus Femoris

BIOMECHANICAL ANALYSIS OF AUTOLOGOUS GRAFT CONFIGURATIONS FOR KNEE LIGAMENT RECONSTRUCTION: A CADAVERIC STUDY

Authors: Helito CP <sup>1</sup>; Lopes MBG <sup>2</sup>; Ariel de Lima D <sup>3</sup>; Neto JBA <sup>2</sup>;  
Clazzer R <sup>4</sup>; Canuto SMG <sup>5</sup>, Franciozi CES<sup>4</sup>

Submitted for publication

Table: Ultimate load to failure of different autologous graft configurations. N = Newtons

| Graft                  | n  | Mean (N) | Standard Deviation (N) | 95% CI Lower (N) | 95% CI Upper (N) |
|------------------------|----|----------|------------------------|------------------|------------------|
| Quadriceps tendon      | 6  | 2302,92  | 79,68                  | 2219,31          | 2386,53          |
| Peroneus longus tendon | 12 | 1991,33  | 160,29                 | 1889,49          | 2093,18          |
| Braided hamstrings     | 5  | 1821,80  | 11,67                  | 1807,30          | 1836,30          |
| Patellar tendon        | 12 | 1734,70  | 136,24                 | 1648,13          | 1821,26          |
| Rectus femoris tendon  | 6  | 1713,88  | 56,05                  | 1655,06          | 1772,69          |
| Parallel hamstrings    | 6  | 1683,76  | 80,50                  | 1599,28          | 1768,24          |
| Iliotibial tract       | 11 | 749,13   | 155,40                 | 644,73           | 853,53           |

Rectus Femoris  
equivalent to  
Patellar and  
Hamstring

# INTRODUCTION

## ACL Hot Topics

### Ramp Lesions

### Rectus Femoris

### Hamstring Graft Configuration

# INTRODUCTION

## ACL Hamstring Graft



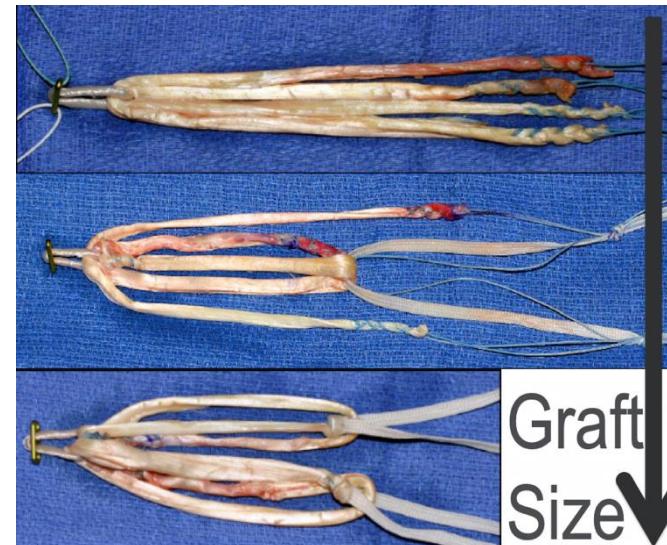
### A Nationwide Profile of ACL Reconstruction in Brazil: Graft Choice, Extra-Articular Procedures, and Meniscal Management

Escudeiro D.; Baches P; Franciozi C; Padua V; Funchal LF; Helito C

Submitted for publication

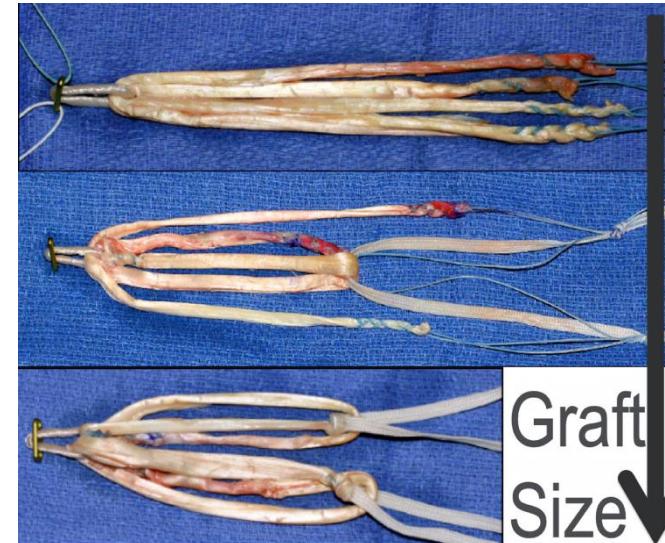
|                   |     |       |
|-------------------|-----|-------|
| Hamstring tendon  | 344 | 90.1% |
| Bone-patellar     | 22  | 5.8%  |
| tendon-bone (BTB) |     |       |
| Rectus femoris    | 10  | 2.6%  |
| tendon            |     |       |
| Quadriceps tendon | 3   | 0.8%  |
| (soft tissue)     |     |       |
| Peroneus longus   | 1   | 0.3%  |
| Synthetic graft   | 1   | 0.3%  |
| Other             | 1   | 0.3%  |
| —                 | —   | —     |

90%  
primary  
choice


# INTRODUCTION

## Graft Preparation




# INTRODUCTION

## Graft Preparation



# INTRODUCTION

## Graft Preparation



ALL

# INTRODUCTION

## What is the best hamstring graft configuration for ACL reconstruction?



# OBJECTIVE

**COMPARE ACL HS CONFIGURATION:**

**ACL + ALL**

***Versus***

**ACL Quintuple or Sextuple**

# METHODS

## RANDOMIZED CONTROLLED TRIAL

*ClinicalTrials.gov PRS*  
Protocol Registration and Results System

**Multicentric**

ClinicalTrials.gov Protocol Registration and Results System (PRS) Receipt

ClinicalTrials.gov ID: NCT06505525

### Study Identification

Unique Protocol ID: U1111-1297-1650

Brief Title: Combined Intra- and Extra-articular ACL Reconstruction Versus Isolated Intra-articular ACL Reconstruction

Official Title: Combined Intra- and Extra-articular ACL Reconstruction Versus Isolated Intra-articular ACL Reconstruction: Prospective Multicenter Randomized Clinical Trial With Hamstring Autograft

**<https://www.randomizer.org>**

**Block Randomization**

# Population

**Primary ACL injury  
in high risk (for relesion) patients  
from 14♀/16♂ – 40 years**

# Inclusion Criteria (ONE or more)

- ***Age (♀ 14 – 25 years; ♂ 16 - 25 years)***
- ***Explosive pivot-shift***
- ***Chronic ACL injury (>12 months)***
- ***Athlete (Tegner Scale ≥ 7)***
- ***Tibial slope > 12°***
- ***Recurvatum***
- ***Hypermobility (Beighton > 5)***

# Non-Inclusion Criteria

- Age > 40years
- ACL revision
- Other ligament injury: PCLinjury (grade 2 and 3); MCLinjury (grade 2 and 3) or (grade 1 with valgus aligned axis); PLCl injury (grade 2 and 3 Fanelli classification)
- Recurrent patellar dislocation
- Chondral lesion ICRS grade 3 and 4>1cm<sup>2</sup>
- Previous ipsilateral knee surgery
- Kellgren-Lawrence grade 3 o 4
- Inflammatory disease
- Contralateral knee ligament injury
- Malalignment: >5° of clinical asymmetry or symmetric >10° varus or valgus
- Final ACL graft diameter <=7mm (Final graft diameter HAD TO BE be >=8mm)
- BMI >35 or < 18
- Active malignant neoplasia
- Pregnancy
- Psychiatric-disorders

# Data Collection

## Physicians: in person visits



Maia Health

<https://healthmaia.com>

- **Remote and blinded**
- **HIPAA-compliant**
- **SMS, WhatsApp** (IKDC, Lysholm, Tegner, VAS)



# Outcomes

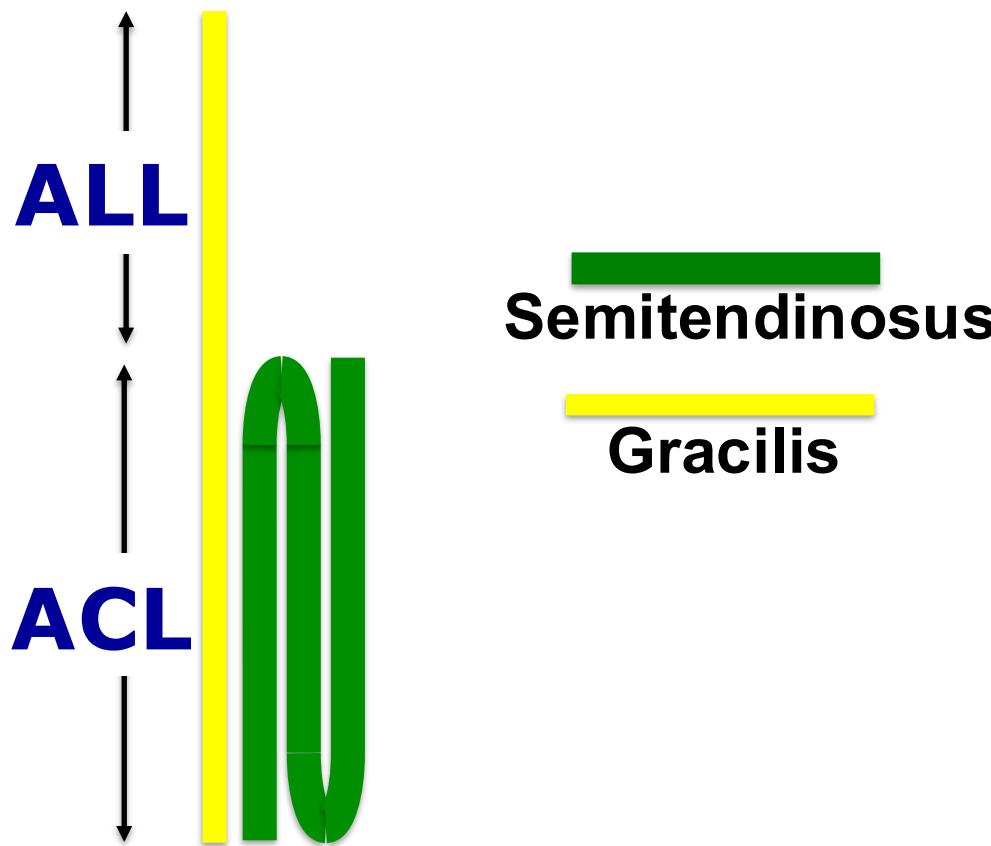
## Primary

### Clinical Failure

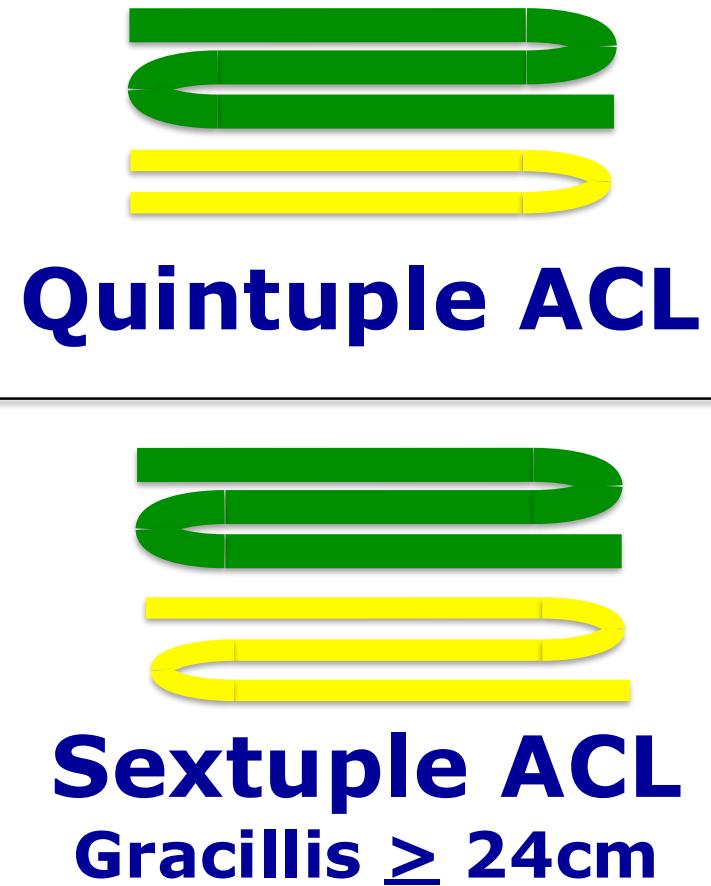
**Pivot shift**  $\begin{cases} \geq 1+ \text{ in more than one return} \\ \geq 2+ \text{ at any return} \end{cases}$

### Graft Rupture

(confirmed by MRI or arthroscopy in  
the presence of any clinical failure  
criteria)

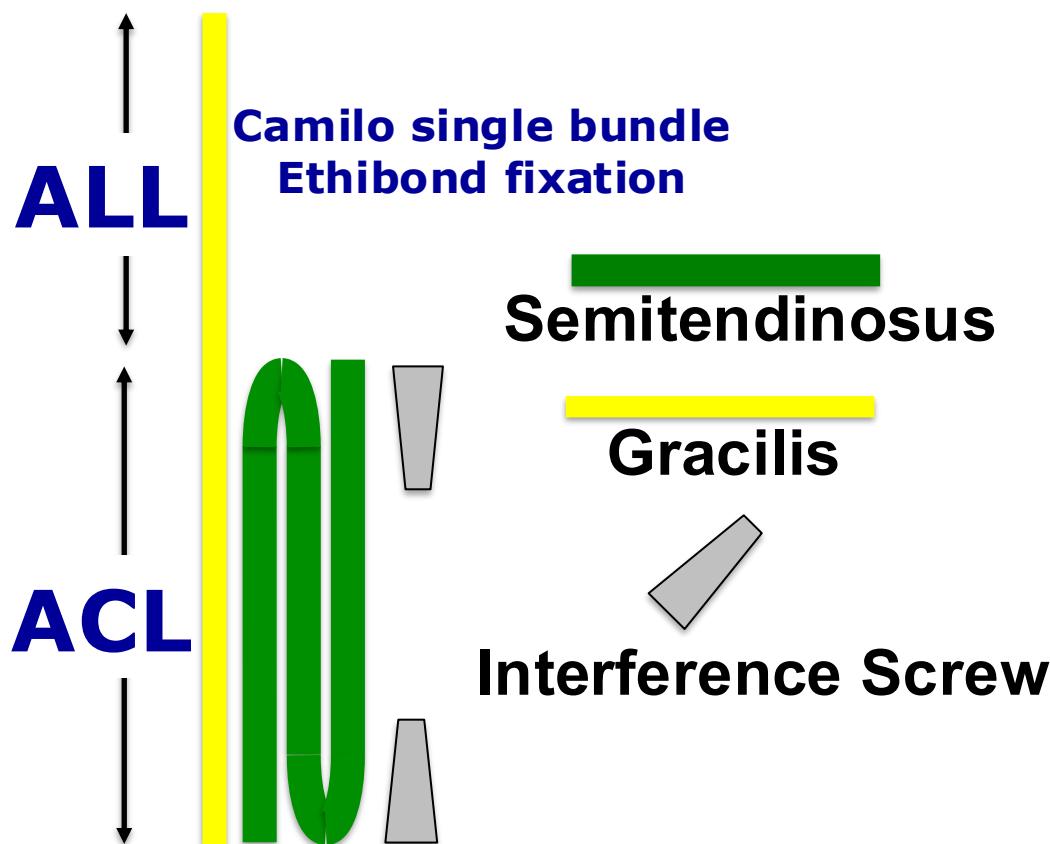

# Outcomes

## Secondary


- **IKDC**
- **Lysholm**
- **Tegner**
- **Objective IKDC**
- **Digital Rolimeter**
- Tampa Scale of Kinesiophobia
- Anxiety and Depression Scale

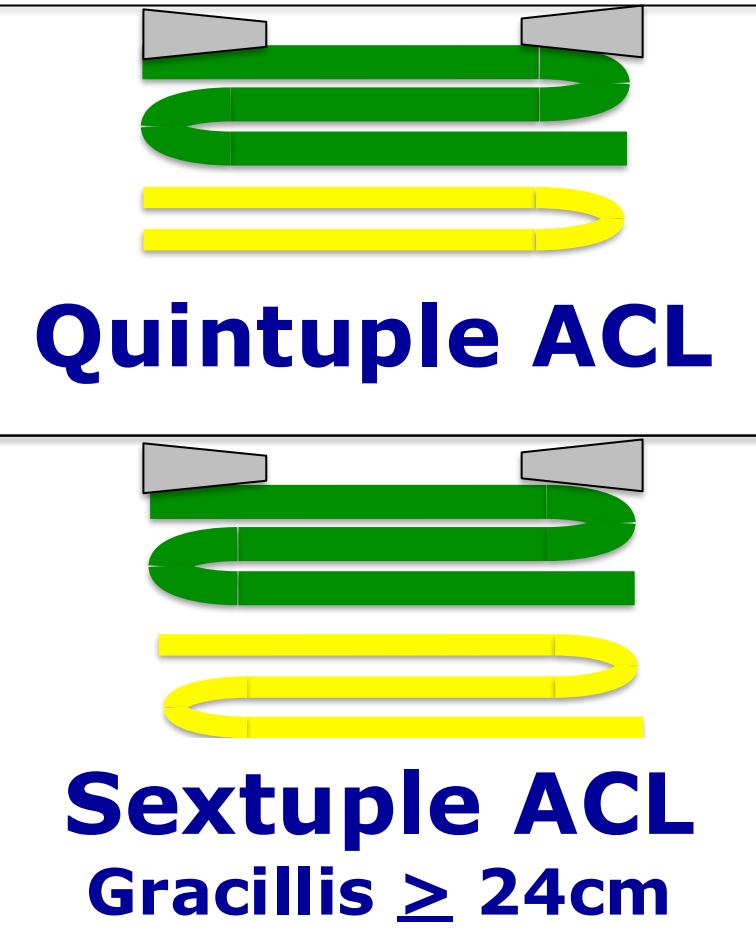
# METHODS - Surgery

## Group ACL + ALL




## Group ACL




# METHODS - Surgery

## Group ACL + ALL



## OUT-IN Femoral Technique

## Group ACL



# Statistical Analysis

## Sample Size

**126 patients (Power 80%)**

15% loss: 145 patients

## **Continuous numerical variables**

Means, standard deviation,  
independent-samples t tests or Mann-  
Whitney U tests

## **Qualitative Variables**

% in each group  
chi-square or Fisher's exact tests

# Results

**Recruitment: 3 years and 5 months**  
(Started August 2022) **(Public Health System)**

**112/129 patients with at least 1y FU (13% loss)**  
Follow-up:  $29.72 \pm 11.95$  months (12 - 41.8)

# Results

**Recruitment: 3 years and 5 months**  
(Started August 2022) **(Public Health System)**

**112/129 patients with at least 1y FU (13% loss)**  
Follow-up:  $29.72 \pm 11.95$  months (12 - 41.8)

**63 ACL+ALL**

**X**

**49 ACL (5/6xHamstring)**

**75% Males**

**68.8% ACLs combined with meniscal injury**

**58.9% Meniscal injuries repaired**

# Results Pre-op

## Baseline Characteristics & Group Homogeneity

| Variable                    | ACL (n = 63)                        | ACL + ALL (n = 49)                 | P value      | SMD   |
|-----------------------------|-------------------------------------|------------------------------------|--------------|-------|
| <b>FOLLOW-UP TIME</b>       | 29.94 ± 11.83 (3.91–41.46)          | 29.50 ± 12.07 (4.17–41.79)         | 0.849        | 0.04  |
| <b>SEX</b>                  | Female 18 (28.6%) / Male 45 (71.4%) | Female 6 (12.2%) / Male 39 (79.6%) | <b>0.012</b> | —     |
| <b>AGE</b>                  | 31.12 ± 7.45 (18–44)                | <b>27.09 ± 6.05 (14–39)</b>        | <b>0.003</b> | 0.59  |
| <b>BMI</b>                  | 25.95 ± 3.11 (19.9–33.0)            | 24.84 ± 2.75 (19.7–33.6)           | 0.090        | 0.38  |
| <b>PREOP FLEXION</b>        | 126.54 ± 26.71 (0–140)              | 130.03 ± 24.26 (0–140)             | 0.522        | -0.14 |
| <b>PREOP EXTENSION</b>      | 1.62 ± 20.67 (-34–140)              | 3.85 ± 21.39 (-11–130)             | 0.622        | -0.11 |
| <b>PREOP ROM</b>            | 124.92 ± 41.75 (-140–142)           | 126.18 ± 44.08 (-130–151)          | 0.891        | -0.03 |
| <b>PRE-INJURY TEGNER</b>    | 6.26 ± 2.19 (1–10)                  | 5.79 ± 1.75 (1–10)                 | 0.245        | 0.24  |
| <b>PREOP IKDC</b>           | 51.03 ± 18.58 (15–92)               | 49.30 ± 19.03 (16–86)              | 0.660        | 0.09  |
| <b>PREOP LYSHOLM</b>        | 49.37 ± 19.00 (16.09–86.20)         | 54.85 ± 30.11 (0–94)               | 0.324        | -0.22 |
| <b>PREOP VAS PAIN</b>       | 3.19 ± 2.84 (0–9)                   | 3.24 ± 3.10 (0–8)                  | 0.922        | -0.02 |
| <b>PREOP TAMPA</b>          | 38.81 ± 9.36 (19–58)                | <b>44.08 ± 9.85 (21–65)</b>        | <b>0.011</b> | -0.55 |
| <b>PREOP ANXIETY</b>        | 6.26 ± 4.00 (0–17)                  | 5.68 ± 3.34 (0–14)                 | 0.446        | 0.16  |
| <b>PREOP DEPRESSION</b>     | 3.44 ± 3.21 (0–14)                  | 3.46 ± 3.20 (0–12)                 | 0.977        | -0.01 |
| <b>MENISCAL INJURY</b>      | 43 / 63 (68.3%)                     | 34 / 49 (69.4%)                    | 0.899        | —     |
| <b>MENISCAL REPAIR</b>      | 26 / 63 (41.3%)                     | 20 / 49 (40.8%)                    | 0.328        | —     |
| <b>PARTIAL MENISCECTOMY</b> | 17 / 63 (27.0%)                     | 13 / 49 (26.5%)                    | 0.675        | —     |

# Primary Outcome

## 1 YEAR FAILURE

| Outcome                     | ACL         | ACL + ALL    | Between-Group Comparison  |
|-----------------------------|-------------|--------------|---------------------------|
| Failure rate (%)            | <b>9.8%</b> | <b>18.2%</b> | +8.4% absolute difference |
| Risk Ratio (ACL+ALL vs ACL) | —           | <b>1.85x</b> | ACL + ALL higher risk     |
| P value                     | —           | —            | <b>0.33</b>               |

# Primary Outcome

## 1 YEAR FAILURE

| Outcome                                 | ACL                         | ACL + ALL                    | Between-Group Comparison  |
|-----------------------------------------|-----------------------------|------------------------------|---------------------------|
| Failure rate (%)                        | <b>9.8%</b>                 | <b>18.2%</b>                 | +8.4% absolute difference |
| Pivot $\geq 1+$ in more than one return | 7.8%<br>(95% CI: 2.5-18.9%) | 15.2%<br>(95% CI: 6.7-30.9%) | +7.4%                     |
| Pivot $\geq 2+$ at any return           | 2%<br>(95% CI: 0.3-10.4%)   | 3%<br>(95% CI: 0.5-15.3%)    | +1%                       |

**Most of the failures:  
Persistent low-grade pivot 1+, rather than gross instability**

# Primary Outcome

## 1 YEAR FAILURE

| Outcome                                 | ACL                         | ACL + ALL                      | Between-Group Comparison  |
|-----------------------------------------|-----------------------------|--------------------------------|---------------------------|
| <b>Failure rate (%)</b>                 | <b>9.8%</b>                 | <b>18.2%</b>                   | +8.4% absolute difference |
| Pivot $\geq 1+$ in more than one return | 7.8%<br>(95% CI: 2.5-18.9%) | 15.2%<br>(95% CI: 6.7-30.9%)   | +7.4%                     |
| Pivot $\geq 2+$ at any return           | 2%<br>(95% CI: 0.3-10.4%)   | 3%<br>(95% CI: 0.5-15.3%)      | +1%                       |
| <u>Graft Rupture (MRI or Arthro)</u>    | 0                           | n=1<br>*new trauma at 8 months | n=1                       |

# Secondary Outcomes - 1 year

## PROs & Change Scores

| Outcome                            | ACL              | ACL+ALL          | P value | SMD   |
|------------------------------------|------------------|------------------|---------|-------|
| <b>IKDC</b>                        | $63.3 \pm 21.6$  | $63.5 \pm 19.9$  | 0.958   | -0.01 |
| <b>Lysholm</b>                     | $64.9 \pm 27.9$  | $59.3 \pm 28.6$  | 0.467   | -0.20 |
| <b>Tegner</b>                      | $4.58 \pm 2.72$  | $3.81 \pm 1.44$  | 0.190   | +0.35 |
| <b>IKDC <math>\Delta</math></b>    | $+23.7 \pm 19.8$ | $+25.1 \pm 17.3$ | 0.809   | -0.07 |
| <b>Lysholm <math>\Delta</math></b> | $+22.4 \pm 25.4$ | $+20.1 \pm 22.8$ | 0.792   | +0.09 |
| <b>Tegner <math>\Delta</math></b>  | $-1.36 \pm 3.02$ | $-1.58 \pm 1.89$ | 0.759   | +0.09 |

No difference

# Secondary Outcomes - 1 year

## MCID Achievement (Distribution-Based)

\*MCID definition: improvement  $\geq 0.5$  SD of pooled baseline score

| Outcome       | ACL   | ACL+ALL | P value |
|---------------|-------|---------|---------|
| IKDC MCID+    | 70.8% | 89.5%   | 0.257   |
| Lysholm MCID+ | 81.0% | 70.6%   | 0.703   |

**High rates of meaningful improvement in both cohorts  
No difference**

## PASS Achievement

\*IKDC PASS  $\geq 75.9$ ; Lysholm PASS  $\geq 85$

| Outcome       | ACL   | ACL+ALL | P value |
|---------------|-------|---------|---------|
| IKDC PASS+    | 60.0% | 71.4%   | 0.553   |
| Lysholm PASS+ | 71.0% | 85.7%   | 0.318   |

**Trends higher in ACL+ALL but without statistical support**

# Secondary Outcomes - 1 year

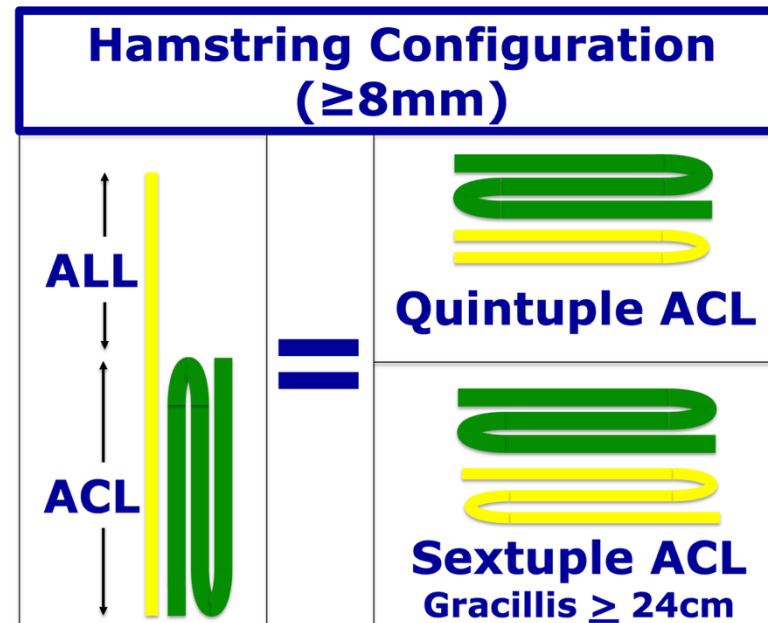
## Objective IKDC

| Test            | Group   | A%   | B%   | C%  | D% | P value |
|-----------------|---------|------|------|-----|----|---------|
| Lachman         | ACL     | 55.9 | 44.1 | 0   | 0  | 0.260   |
|                 | ACL+ALL | 39.1 | 56.5 | 4.3 | 0  |         |
| Anterior Drawer | ACL     | 32.4 | 64.7 | 2.9 | 0  | 0.858   |
|                 | ACL+ALL | 26.1 | 69.6 | 4.3 | 0  |         |
| Pivot Shift     | ACL     | 64.7 | 35.3 | 0   | 0  | 0.658   |
|                 | ACL+ALL | 73.9 | 26.1 | 0   | 0  |         |

## Digital Rolimeter (mm)

| Group   | Mean ± SD     | P value |
|---------|---------------|---------|
| ACL     | -3.83 ± 31.31 |         |
| ACL+ALL | -3.72 ± 27.58 | 0.989   |

# Secondary Outcomes - 1 year


## Complications & Reoperations

|               | ACL           | ACL+ALL                                                                                                                                        | P value |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Complications | 7.9%          | 6.1%                                                                                                                                           | 1.000   |
| Reoperation   | 3.2%<br>2 MUA | 6.1%<br>New trauma at 8 months – <u>GRAFT RUPTURE</u> : Revision BTB + Lemaire<br>MM Root: Reinsertion<br>Stress fracture: Plate + Iliac graft | 0.652   |

No difference

# Conclusion

At 1 year, outcomes did not differ significantly between ACL+ALL versus hamstring quintuple or sextuple ACL reconstructions in high-risk patients, despite a numerically higher clinical failure rate with ACL+ALL (NS).



**Study is still ongoing**



**Thank You**