

Risk of Revision and Reoperation after ACL Reconstruction. Comparison of Quadriceps Tendon, Patellar Tendon, and Hamstring Autografts Stratified by Patient Gender and Age: A cohort study of 27,715 Patients

ACL Study Group
2/2/26

Gregory B Maletis, MD

Heather A Prentice, PhD

Chelsea Reyes

Christopher R Lehman, MD

Justin S Yang, MD

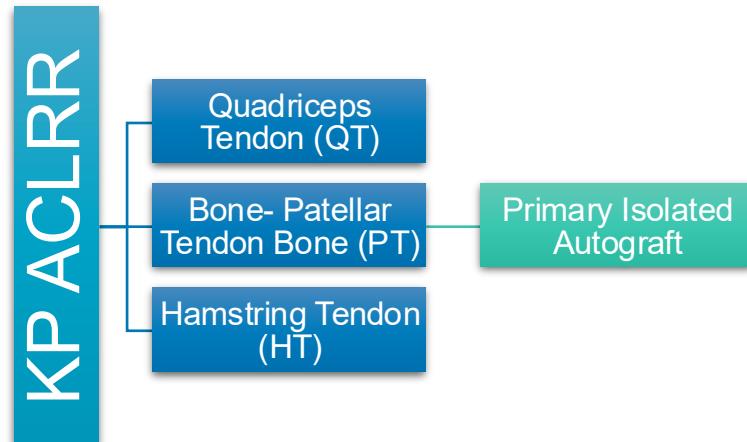
Colin Mansfield, MD

Disclosure

I (and/or my coauthors) have nothing to disclose

Purpose:

To evaluate **risk for subsequent surgical procedures**, including revision and reoperation, for a cohort of primary anterior cruciate ligament reconstruction (ACLR) patients according to autograft selection


- Stratified by patient Age and Gender.
 - < 22yo and \geq 22yo

Methods:

Design: Cohort study, 2012-2023

Data Source: Kaiser Permanente (KP) ACLR Registry (ACLRR).

Outcome of interest: Risk for revision and risk for ipsilateral reoperation according to autograft selection

Purpose:

To evaluate risk for subsequent surgical outcomes, including revision and reoperation, for a cohort of primary anterior cruciate ligament reconstruction (ACLR) patients according to autograft selection

- Stratified by patient Age and Gender.
 - < 22yo and \geq 22yo

Statistics/Covariates:

Primary outcome: Revision

Secondary outcomes: **Re-operation** (stiffness, extensor disruption, meniscus reasons, cartilage reasons)

Covariates:

- Patient factors: Age, BMI, race, smoking status, ASA classification, activity at time of injury
- Procedure factors: cartilage injury reported, meniscus injury reported, tunnel drilling technique and operative time

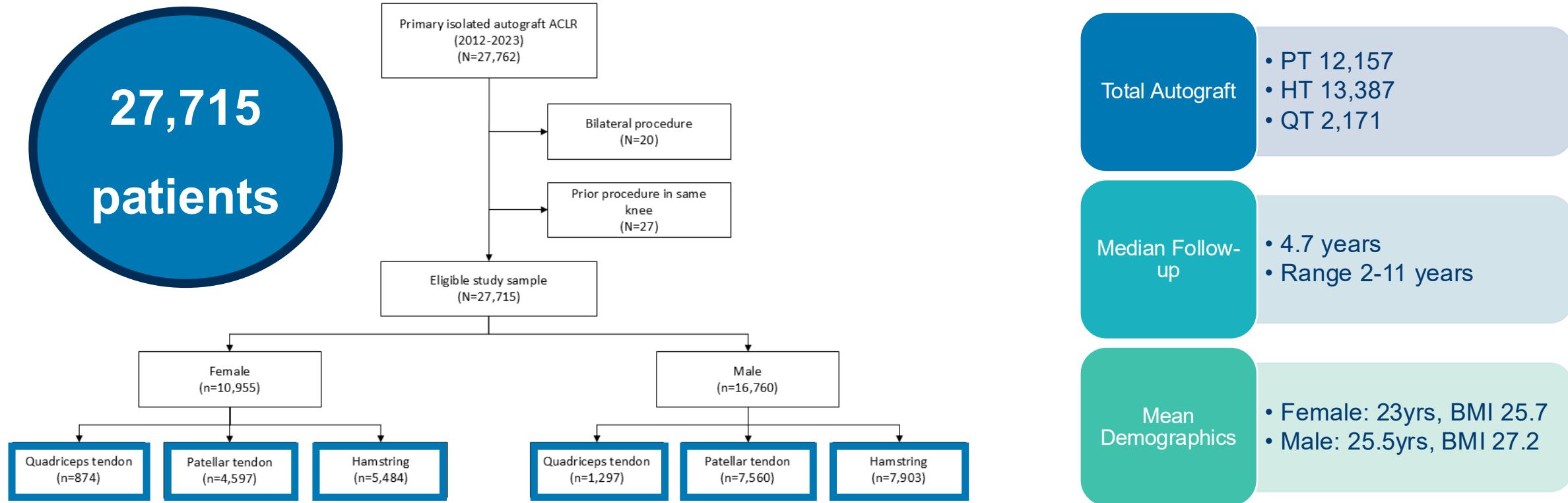
Purpose:

To evaluate risk for subsequent surgical outcomes, including revision and reoperation, for a cohort of primary anterior cruciate ligament reconstruction (ACLR) patients according to autograft selection

- Stratified by patient Age and Gender.
 - < 22yo and \geq 22yo

Statistics/Covariates:

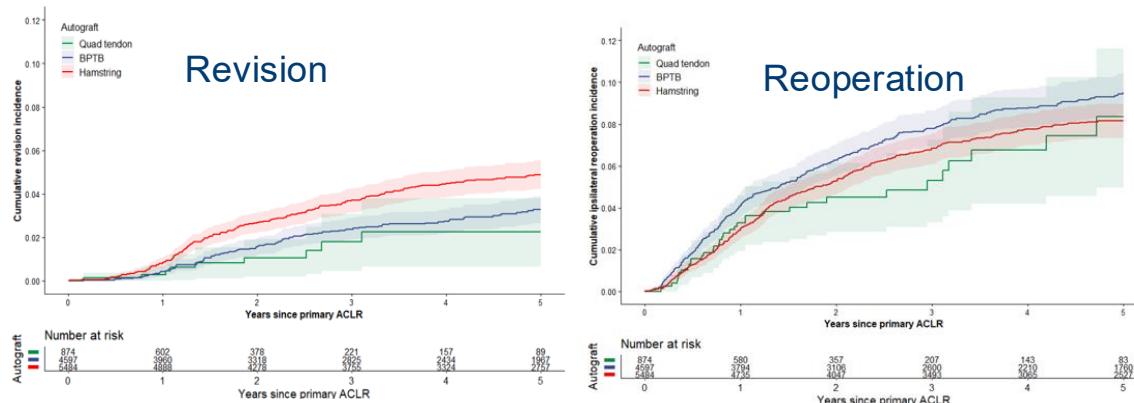
Statistics

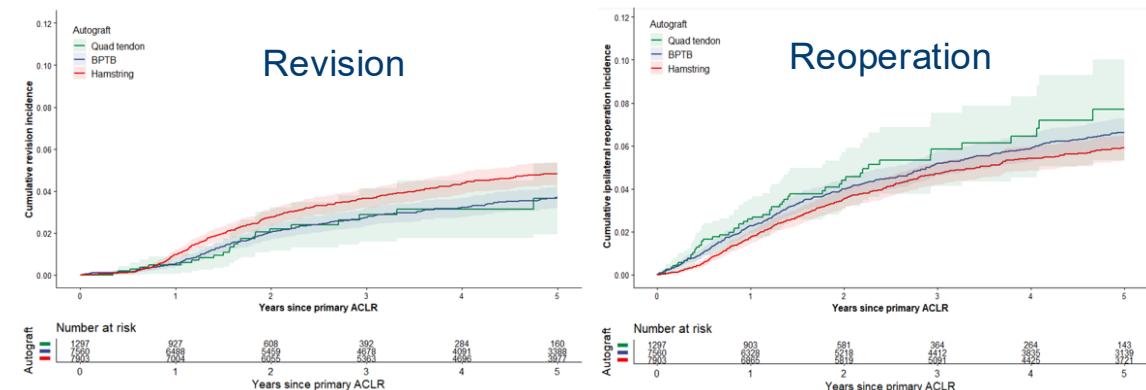

Hazard ratios (HR) and 95% confidence intervals (CI) are reported; $p<0.05$ was the threshold for statistical significance and all tests were two-sided. The **number needed to treat (NNT)** was also calculated from the regression analysis using the same covariates

Cumulative incidence of revision and reoperation with one minus Kaplan-Meier estimate, Multivariate Cox proportional hazards regression to evaluate associations, covariates selected into final multivariate model as confounders, regression models with cluster terms at surgeon level

Results:

There were 10,955 females and 16,760 males who underwent primary isolated ACLR; procedures were performed by 319 surgeons at 58 hospitals.


27,715
patients


Results:

At 5-year follow-up, the crude incidence of revision for our entire group was 2.7% for QT, 3.0% for PT, and 4.5% for HT ACLR

Females

Males

- QT vs PT ACLR:** No difference in revision risk (HR=0.76, 95% CI=0.36-1.59) and no difference in reoperation risk (HR=0.83, 95% CI=0.57-1.23).
- QT vs HT ACLR:** **Lower revision risk** (HR=0.44, 95% CI=0.24-0.83) and no difference in reoperation risk (HR=0.94, 95% CI=0.63-1.38).
- PT vs HT ACLR:** **Lower revision risk** (HR=0.57, 95% CI=0.44-0.73) and no difference in reoperation risk (HR=1.09, 95% CI=0.93-1.28).

- QT vs PT ACLR:** No difference in revision risk (HR=0.94, 95% CI=0.57-1.54) and no difference in reoperation risk (HR=1.14, 95% CI=0.72-1.81).
- QT vs HT ACLR:** No difference in revision risk (HR=0.72, 95% CI=0.49-1.07) and no difference in reoperation risk (HR=1.31, 95% CI=0.88-1.97).
- PT vs HT ACLR:** **Lower revision risk** (HR=0.79, 95% CI=0.65-0.97) and no difference in reoperation risk (HR=1.14, 95% CI=0.96-1.35).

Discussion - Revision

Strongest association found in young female athletes <22yo

Female

- < 22 yo **HT vs QT**: 2.3x higher risk
- < 22 yo **HT vs PT**: 1.8x higher risk
- QT vs PT**: No difference

Male

- HT vs QT**: No difference
- HT vs PT**: 1.3x higher risk
- QT vs PT**: No difference

≥ 22yo Female: no significant difference PT vs HT vs QT

Male: No age-based revision risk in graft selection

Discussion – Re-operation

Stiffness, Extensor Disruption, Meniscus, Cartilage

Female

- QT vs HT:** No difference
- PT vs HT:** No difference
< 22 1.5 x higher risk for stiffness
- QT vs PT:** No difference

Male

- QT vs HT:** ≥ 22 1.6x higher risk
< 22 higher risk for stiffness and cartilage
- PT vs HT:** ≥ 22 1.4x higher risk
and 1.6x higher risk for stiffness
- QT vs PT:** No difference

QT Stiffness:

- *No increase in females.*
- *+Increase male <22, vs HT*

QT vs PT: No difference gender/age

Number Needed to Treat (NNT)

- If performing ACLR in young females, a surgeon would have to perform **24** ACLR with QT and **23** ACLR with PT to prevent 1 revision compared to HT.
- In young males a surgeon would have to perform **42** ACLR with QT and **63** ACLR with PT to prevent one revision compared to use of HT, respectively.

Over the years of the study, 2012-2023

Median US ACL: \$16,238 (Herzog et al Orthop J Sports Med 2017)

Lifetime Cost US: \$38,121 (Mather et al JBJS 2013)

Limitations

- Revision does not = Failure
- Surgical technique and rehabilitation were not standardized
- Graft diameter was not evaluated
- Clinical exam and PRO's not evaluated
- Observational studies can't determine causality

Strengths

- Large cohort 27,715 patients
- High internal validity
- Representative of US population
- Multiple surgeons and hospitals

Conclusion

- HT significantly higher risk of revision (2.3x and 1.8x vs QT/PT), in young female athletes <22 yo
- In males, HT 1.3x higher risk of revision vs PT
- No significant difference age/gender QT vs PT
- Increased risk stiffness PT vs HT and QT vs HT in < 22 males

This data can be used to help pick the most appropriate graft based on the patient's individual risk profile

THANK YOU!