

# THE DOSTAR TRIAL

**SEMI-T + ADJUSTABLE BUTTON  
VS  
SEMI-T/GRACILIS + SCREW**

**IN HAMSTRING ACL RECONSTRUCTION**

*A DOUBLE BLINDED  
RANDOMIZED CONTROLLED TRIAL*

**A/Prof Peter D'Alessandro**  
MBBS Hons. (UWA) FRACS FAOrthA  
*Sports Orthopaedic Surgeon*



**Associate Professor**

*University of Western Australia*

**Chief Supervisor**

*Perth Sports Surgery Fellowship*



**Director**

*Orthopaedic Research Foundation of Western Australia*

**Chief, Sports Trauma Unit**

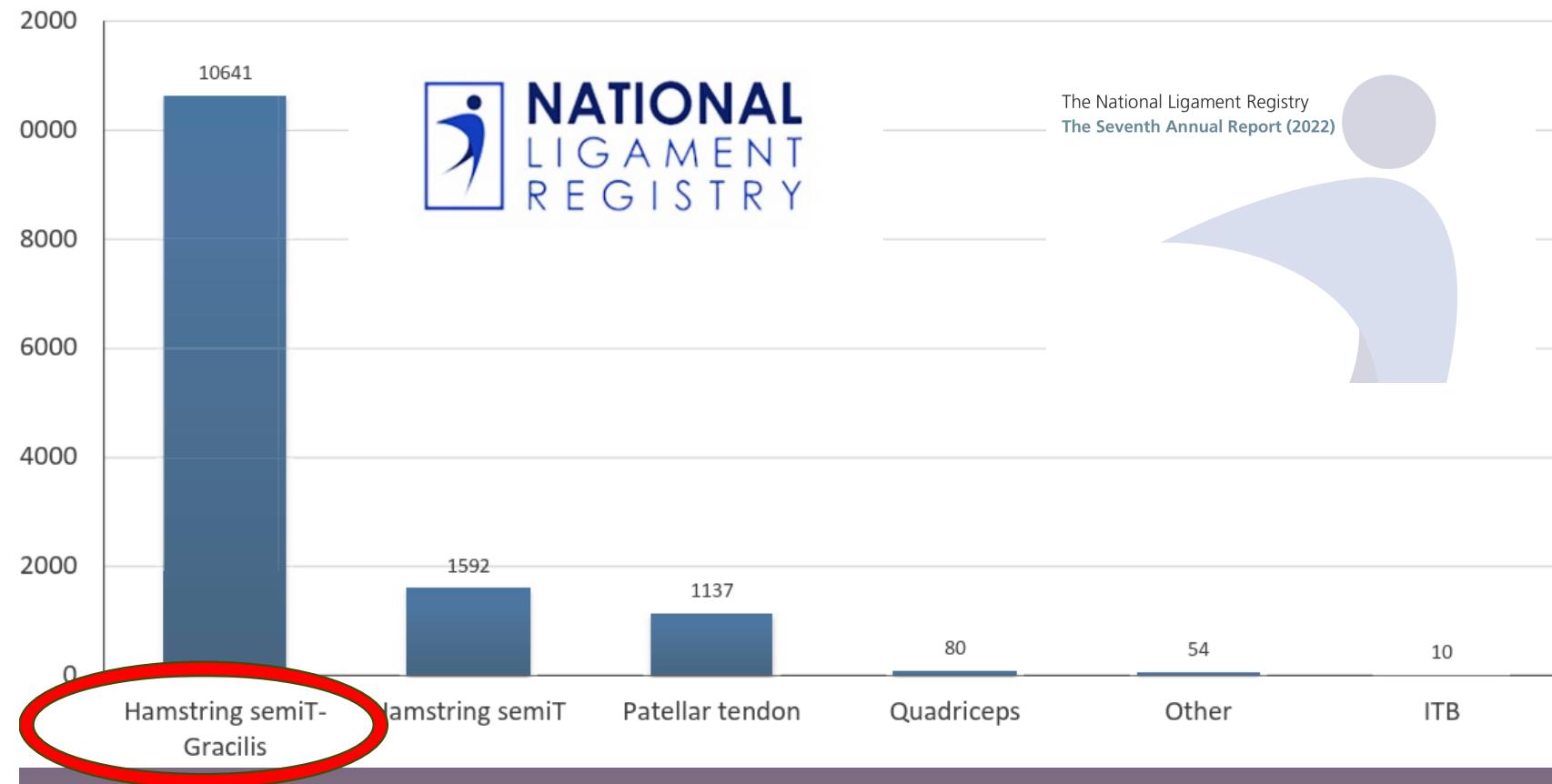
*Fiona Stanley Fremantle Hospitals Group*



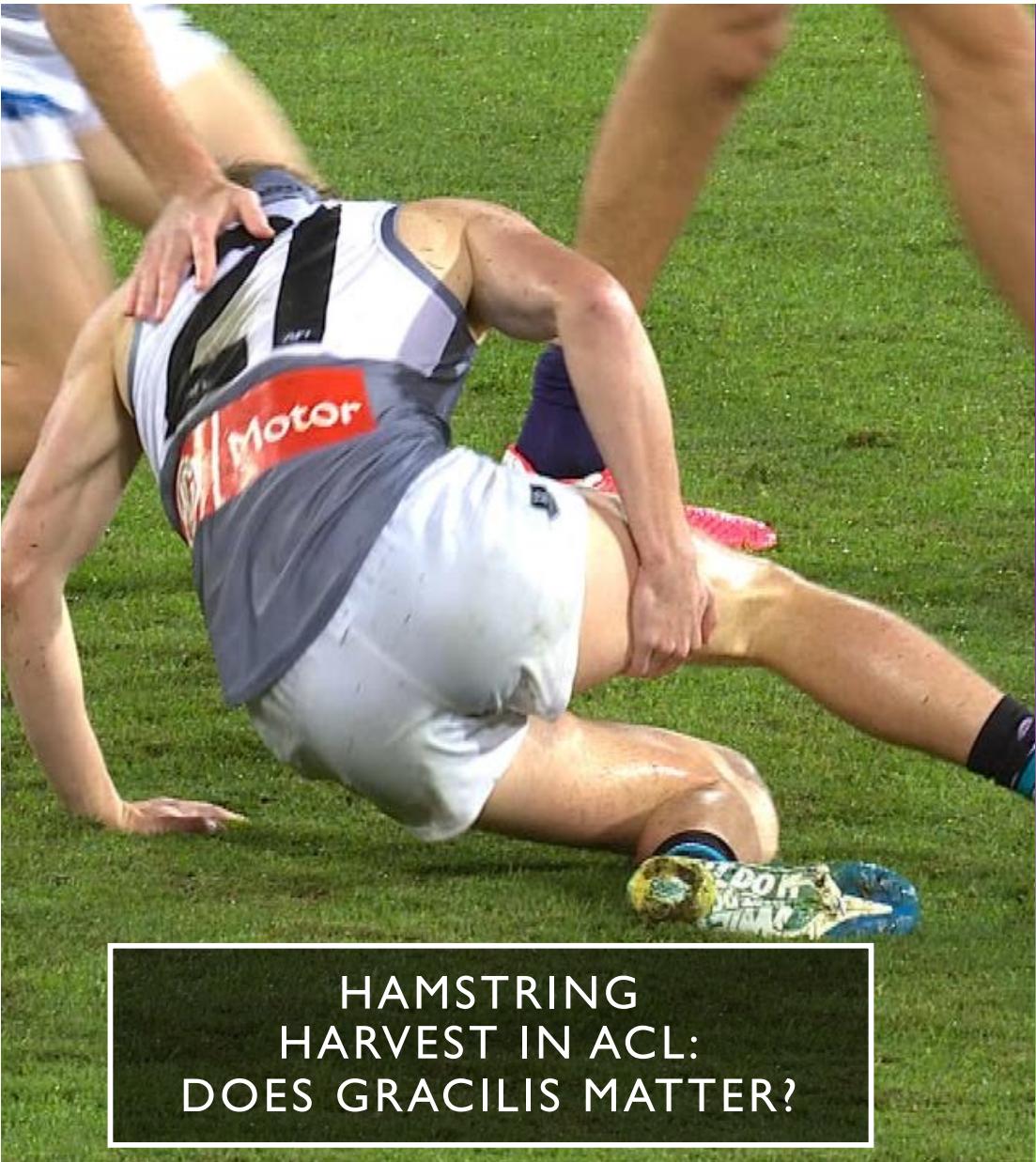
**ORTHOPAEDIC RESEARCH FOUNDATION  
WESTERN AUSTRALIA**

**Adam Lawless, Jay Ebert, Peter Davies, Peter Edwards, Shahbaz Malik**




# Declaration of Interest

I declare that in the past three years I have:


- **held shares in:** *Nil*
- **received royalties from:** *Nil*
- **done consulting work for:** *Smith & Nephew, St John of God Healthcare*
- **given presentations for:** *Smith & Nephew, Medacta, Arthrex*
- **received research/institutional support from:** *Smith & Nephew, Arthrex*
- **received travel support from:** *Smith & Nephew, Medacta, Pune Knee Course  
Thai Orthopaedic Society for Sports Medicine*

Signed: *Peter D'Alessandro*

31 January 2026



PERTH  
SPORTS SURGERY  
FELLOWSHIP



## HAMSTRING HARVEST IN ACL: DOES GRACILIS MATTER?

Reduced hamstring strength

Donor site pain/morbidity

Muscle strains after return to sport

Single Tendon theoretical Advantages:  
Broad short graft  
Adjustable button fixation

No high level evidence  
suggesting technique superiority

# *Editorial Commentary: Gracilis-Sparing Anterior Cruciate Ligament Hamstring Graft Reconstruction Is Less Invasive Than Semitendinosus-Gracilis Graft Harvest, and Shows No Clinical Difference in Outcomes With Grafts Greater Than 8 mm in Diameter*

Eff Griffin R. Rechter, M.D. • Eric Mason, M.D. • Bruce A. Levy, M.D.

Published: January 11, 2024 • DOI: <https://doi.org/10.1016/j.arthro.2023.11.023>



If we really want to put to rest the issue of whether harvesting the gracilis makes a “clinically important difference,” then we would need to design a study 1 of 2 ways: One would typically assume that the optimal study design would involve a prospective randomized controlled trial in which patients would



ELS

System

Doc

AI

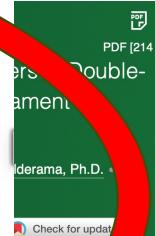
+

Avi

Robert A. Magnusson

[View](#)

[Cite](#)


Riccardo Cristiani M.D., Ph.D.<sup>a b</sup>    , Magnus Forssblad M.D., Ph.D.<sup>a</sup>,  
Gunnar Edman M.D., Ph.D.<sup>a</sup>, Karl Eriksson M.D., Ph.D.<sup>c d</sup>, Anders Stålman M.D., Ph.D.<sup>a b</sup>

08.018.

London

s

ter?



## A semitendinosus with adjustable button graft construct in patients undergoing hamstring ACL reconstruction results in improved knee flexor strength symmetry and less donor site pain and morbidity: Outcomes from the DOSTAR randomized controlled trial

DOI: 10.1002/ksa.12698

Adam M. Lawless<sup>1</sup> | Jay R. Ebert<sup>2,3,4</sup> | Peter K. Edwards<sup>4,5</sup>  
Shahbaz S. Malik<sup>6</sup> | Peter S. E. Davies<sup>1,4</sup> | Peter A. D'Alessandro<sup>1,4,7</sup>

KNEE

<sup>1</sup>Fiona Stanley and Fremantle Hospitals Group, South Metropolitan Health Service, Perth, Western Australia, Australia<sup>2</sup>School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia<sup>3</sup>HFRC, Perth, Western Australia, Australia<sup>4</sup>Orthopaedic Research Foundation of Western Australia, Perth, Western Australia, Australia<sup>5</sup>School of Allied Health, Curtin University, Perth, Western Australia, Australia<sup>6</sup>Worcester Acute Hospitals NHS Trust, Worcester, UK<sup>7</sup>School of Surgery, University of Western Australia, Perth, Western Australia, Australia**Correspondence**Jay R. Ebert, The School Human Sciences (M408), The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.  
Email: [jay.ebert@uwa.edu.au](mailto:jay.ebert@uwa.edu.au)**Funding information**  
Smith and Nephew, Grant/Award Number: IIS887

Knee Surgery, Sports Traumatology, Arthroscopy WILEY

# A semitendinosus with adjustable button graft construct in patients undergoing hamstring ACL reconstruction results in improved knee flexor strength symmetry and less donor site pain and morbidity: Outcomes from the DOSTAR randomized controlled trial

**Adam M. Lawless<sup>1</sup> | Jay R. Ebert<sup>2,3,4</sup> | Peter K. Edwards<sup>4,5</sup> |  
Shahbaz S. Malik<sup>6</sup> | Peter S. E. Davies<sup>1,4</sup> | Peter A. D'Alessandro<sup>1,4,7</sup>**

**Abbreviations:** ACLR, anterior cruciate ligament reconstruction; BMI, body mass index; CKRS, Cincinnati Knee Rating System; DFPACLR, Donor-site-related Functional Problems following Anterior Cruciate Ligament Reconstruction; IKDC, International Knee Documentation Committee; LET, lateral extra-articular tenodesis; LKS, Lysholm Knee Score; LSI, limb symmetry index; MRI, magnetic resonance imaging; PROMs, patient-reported outcome measures; RCT, randomized controlled trial; ROM, range of motion; SHD, single horizontal hop for distance; SMD, standardized mean difference; ST, semitendinosus; STG, semitendinosus-gracilis; VAS, visual analogue scale; VAS-F, visual analogue score for pain frequency; VAS-S, visual analogue score for pain severity.

This is an open access article under the terms of the [Creative Commons Attribution License](#), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.  
© 2025 The Author(s). *Knee Surgery, Sports Traumatology, Arthroscopy* published by John Wiley & Sons Ltd on behalf of European Society of Sports Traumatology, Knee Surgery and Arthroscopy.



**SINGLE (ST)**



**DUAL (STG)**



## Prospective Double Blinded RCT

University of  
Western Australia

**Single Tendon +  
Adjustable Button  
*UltraButton*  
Vs  
Dual Tendon +  
Screw  
*BiORCI***

 **ANZCTR**  
Australian New Zealand Clinical Trials Registry



PERTH  
ORTHOPAEDIC  
SURGERY  
PARTNERSHIP

# AIMS

## DONOR-SITE RELATED FUNCTIONAL PROBLEMS FOLLOWING ANTERIOR CRUCIATE LIGAMENT (ACL) RECONSTRUCTION

NAME: \_\_\_\_\_ DATE: \_\_\_\_\_ YEAR OF BIRTH: \_\_\_\_\_

DATE OF ACL-RECONSTRUCTION: \_\_\_\_\_

SEX:  Female  Male GRAFT:  Patellar tendon  Hamstring tendon

The purpose of this questionnaire is to evaluate donor-site related problems that can occur following an ACL-reconstruction.

➢ To you who have undergone reconstruction with the knee cap tendon (patellar tendon):

When you answer the questions about symptoms from the donor-site, you should focus on symptoms from your **scar** on your knee and on the front of your knee and thigh. When answering questions about your thigh, the answer should be related to the front of your thigh. The symptoms may be for example pain, cramp, tenderness, numbness and tightness.

➢ To you who have undergone reconstruction with a tendon from the back of your thigh (hamstring tendon):

When you answer the questions about symptoms from the donor-site, you should focus on symptoms from your **scar** below the knee and on the back/inside of your knee and thigh. When answering questions about your thigh, the answer should be related to the back/inside of your thigh. The symptoms may be for example pain, cramp, tenderness, numbness and tightness.

**When answering the questions tick the box that best characterize your symptoms related to the donor-site during the last week (Please, mark only one box per question)**

### 1. How often do you experience symptoms related to the donor-site?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 2. Do you experience symptoms related to the donor-site when you walk?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 3. Are you troubled by pain/numbness around your scar?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 4. Are you troubled by numbness/tingling/loss of sensation in the lower part of your leg?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 5. Do you experience symptoms related to the donor-site when you straighten your knee fully?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 6. Do you experience symptoms related to the donor-site when you bend your knee fully?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 7. How much do the symptoms related to the donor-site affect your ability to perform daily activities?

Not at all  Very little  Little  Moderate  Much  Very much  Totally

*In addition, 4 months and onwards*

### 8. Do you experience symptoms related to the donor-site when you squat?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 9. Do you experience symptoms related to the donor-site when you kneel?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 10. Do you experience symptoms related to the donor-site when you walk more than 2 km?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 11. Do you experience symptoms related to the donor-site when you walk the stairs?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 12. Do you experience symptoms related to the donor-site when you jog?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 13. Are you troubled by weakness in your thigh during daily activities?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 14. Are you troubled by weakness in your thigh during your rehab training/exercise?

Never  Very seldom  Seldom  Sometimes  Often  Very often  Always

### 15. How much do the symptoms related to the donor-site affect your performance in your rehab training/exercise/specific sport?

Not at all  Very little  Little  Moderate  Much  Very much  Totally

### 16. How much do the symptoms related to the donor-site affect your ability to perform your rehab training/exercise/specific sport?

Not at all  Very little  Little  Moderate  Much  Very much  Totally

## Clinical DONOR SITE MORBIDITY

### PROMS/Functional scores

- IKDC
- Modified Cincinnati
- Lysholm
- ACL-RSI

### Graft Laxity– KT-1000

### Comparison to GNRB DYNELAX

### Re-Injury

- Graft Rupture
- Hamstring Injuries

## SECONDARY AIMS



### Hamstring/Quads Strength

Isokinetic Dynamometer



### Functional Capacity

Single hop for distance  
Triple hop for distance  
Triple crossover hop for distance  
6m timed hop



### MRI Evaluation

Graft Maturation/Signal  
Hamstring Volumetric  
Reconstitution



### Adverse events



PERTH  
SPORTS SURGERY  
FELLOWSHIP



PERTH  
SPORTS SURGERY  
FELLOWSHIP

## METHODS

**Number  
Required** 128

- Alpha 0.05 and power 80%

**Random  
number  
generator**

- 1:1 allocation to both surgical arms

**Primary and  
secondary  
study aims**

- 2 weeks, 3 months, 6 months, 1 year, 2 years, 5 years

## ANAESTHETIC & SURGICAL TECHNIQUE



### Standardized anaesthetic

GA

Adductor canal block - 20mL/0.2% Ropivocaine

Local anaesthetic infiltration

- 50mL 0.2% Ropivocaine: Hamstrings
- Remainder: Knee



### Surgical technique

Min 8mm graft diameter

Endobutton Femur

**Ultrabutton/Tibial Extendobutton (ST)**

**BioRCI Tibia (STG)**



### Standardized Rehab

WBAT if ACL Only (no brace)

PWB/Progressive Range 6/52 with meniscal repair

RTS >9 months after RTS Assessment



## INCLUSION/ EXCLUSION

### Inclusion

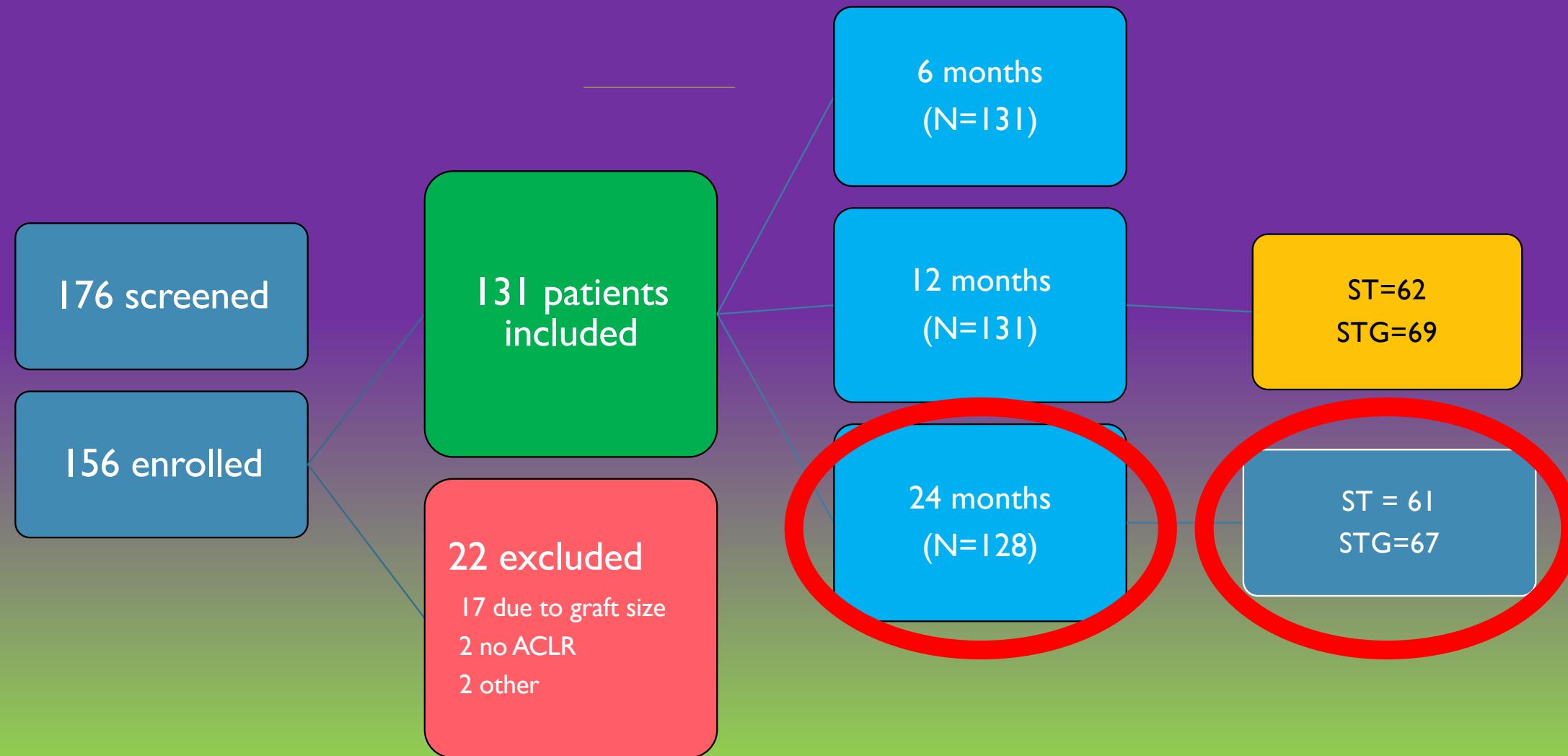
18 -50 years

### Exclusion

Skeletal immaturity

ACL rupture confirmed  
clinically and radiologically with MRI last 12  
months

Multi-ligament knee injury


Meniscal injury/LET OK

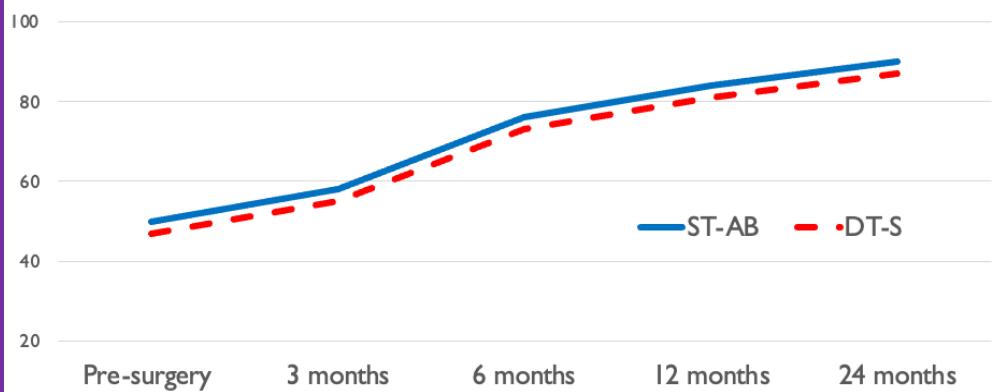
Revision ACL

Graft diameter  $\geq$ 8mm

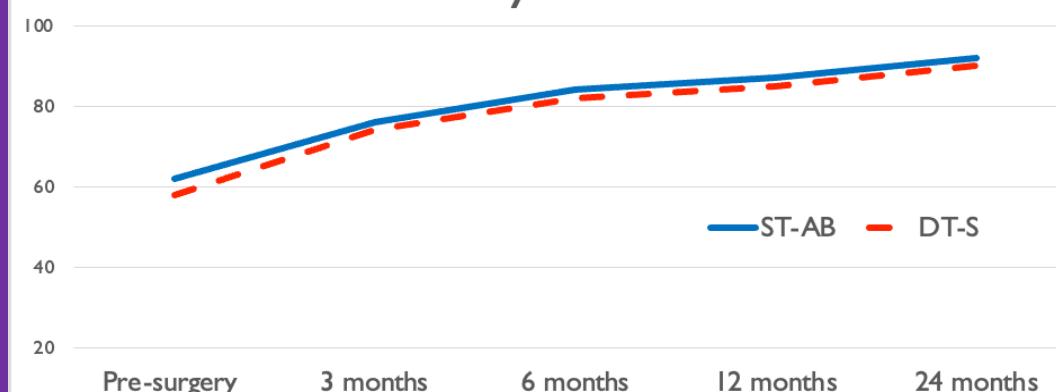
Graft diameter  $<$ 8mm

## PATIENT FLOW CHART




## PATIENT AND SURGICAL CHARACTERISTICS



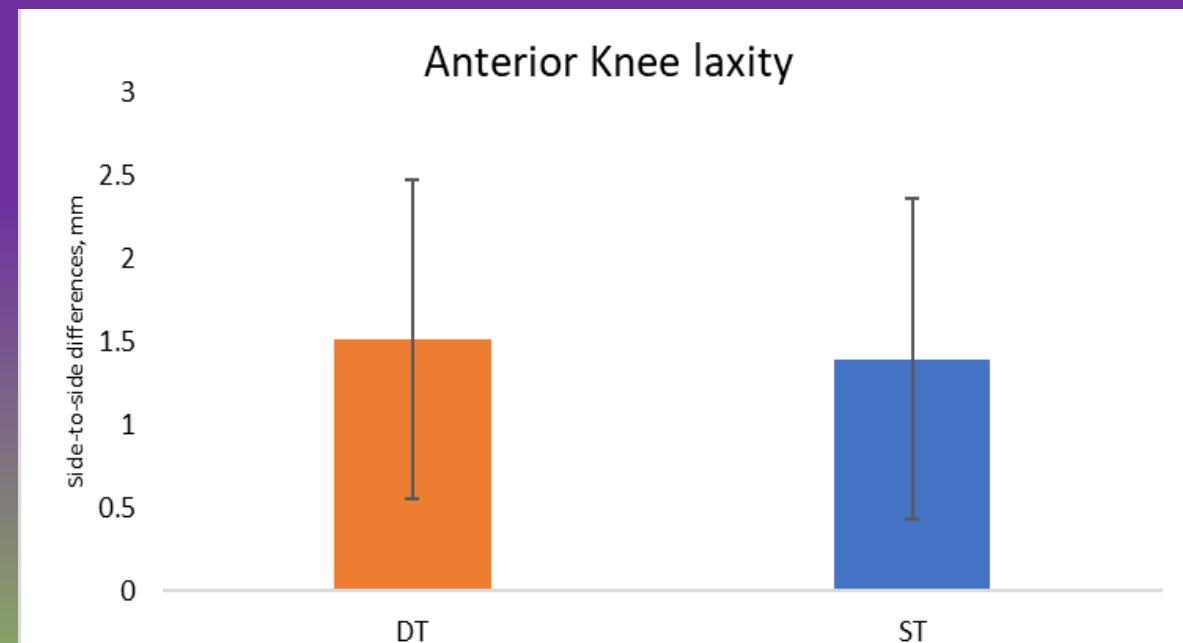

| Characteristics              | ST-AB<br>N=62  | STG-S<br>N=69       |
|------------------------------|----------------|---------------------|
| Sex                          |                |                     |
| Male                         | 44             | 41                  |
| Age                          | 28.6           | 27.9                |
| BMI                          | 25.8           | 25.2                |
| Time from Injury (weeks)     | 14.2           | 12.1                |
| Graft size                   | 8.5mm (8-9.5)  | 8.9mm (8-9.5)       |
| Concomitant meniscal repairs | 61%            | 59%                 |
| Re-Rupture                   | 1<br>18 months | 5<br>(17-24 months) |

# PROMS

IKDC

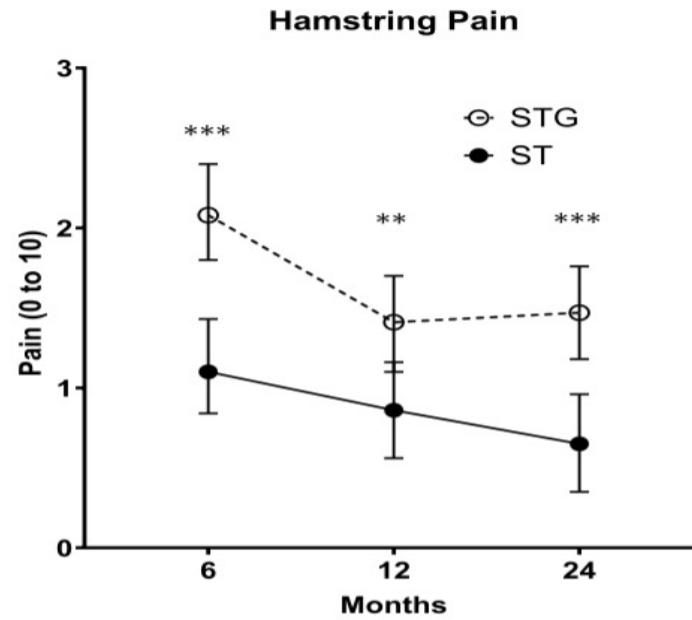


Lysholm




Cincinnati

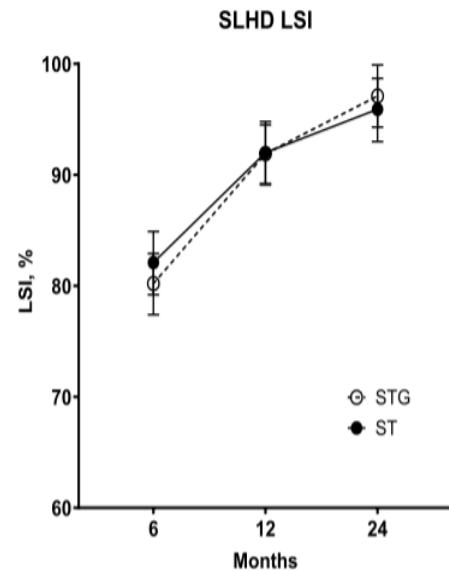
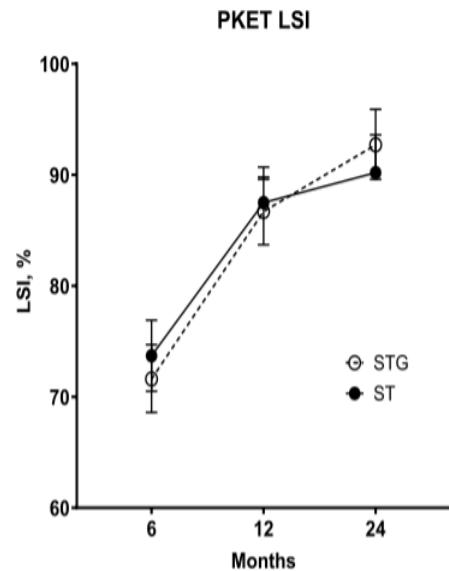
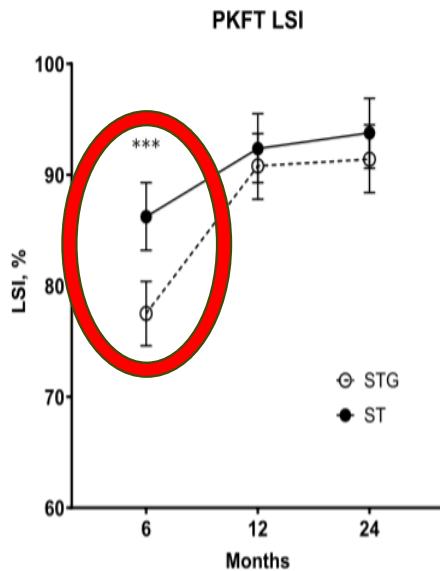






## ANTERIOR KNEE LAXITY (SSD)

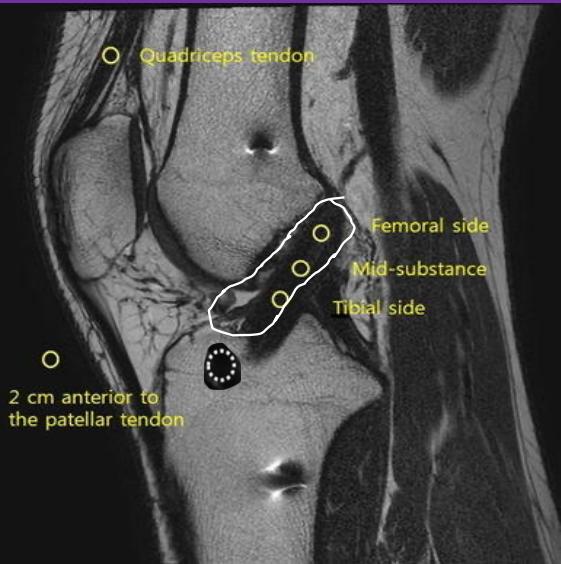





No differences were observed in side-to-side differences in anterior knee laxity between ST and DT groups ( $p>0.05$ ) (1.5mm, 1.3mm)

# DONOR SITE MORBIDITY



Significantly **LESS** donor site morbidity  
at **6, 12 and 24 months** in  
**ST Group**


# QUADS + HAMSTRING FUNCTION



# SIGNAL INTENSITY RATIO



PERTH  
SPORTS SURGERY  
FELLOWSHIP



| Variable                    | STG         |             | ST          |             | P Value     |              |
|-----------------------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                             | 6 Months    | 12 Months   | 6 Months    | 12 Months   | Time effect | Group effect |
| <i>T2 SIR</i>               |             |             |             |             |             |              |
| Tibial aperture             | 2.44 ± 0.95 | 2.11 ± 0.69 | 1.33 ± 0.53 | 1.60 ± 0.52 | 0.761       | <0.001       |
| Adjacent to tibial tunnel   | 2.17 ± 0.88 | 2.19 ± 0.80 | 1.56 ± 0.79 | 1.62 ± 0.55 | 0.725       | 0.001        |
| Mid portion                 | 3.18 ± 1.73 | 3.21 ± 1.37 | 1.93 ± 0.97 | 1.93 ± 0.76 | 0.943       | <0.001       |
| Adjacent to femoral tunnel  | 2.68 ± 1.70 | 2.32 ± 1.26 | 1.78 ± 0.78 | 1.67 ± 0.63 | 0.296       | 0.011        |
| Femoral tunnel              | 3.26 ± 1.28 | 3.00 ± 1.12 | 2.52 ± 1.20 | 2.11 ± 0.73 | 0.064       | <0.001       |
| Drawn intra articular graft | 3.09 ± 1.43 | 3.04 ± 1.13 | 1.92 ± 0.93 | 1.97 ± 0.57 | 0.995       | <0.001       |

| Variable                    | STG         |             | ST          |             | P Value     |              |
|-----------------------------|-------------|-------------|-------------|-------------|-------------|--------------|
|                             | 6 Months    | 12 Months   | 6 Months    | 12 Months   | Time effect | Group effect |
| <i>T1 SIR</i>               |             |             |             |             |             |              |
| Tibial aperture             | 3.22 ± 1.34 | 3.10 ± 0.97 | 1.92 ± 0.71 | 2.07 ± 0.66 | 0.933       | 0.002        |
| Adjacent to tibial tunnel   | 2.41 ± 0.85 | 2.63 ± 0.79 | 1.69 ± 0.61 | 1.88 ± 0.60 | 0.080       | 0.002        |
| Mid portion                 | 3.10 ± 1.28 | 3.16 ± 0.93 | 2.18 ± 0.70 | 2.45 ± 0.60 | 0.292       | 0.014        |
| Adjacent to femoral tunnel  | 2.46 ± 0.80 | 2.41 ± 0.60 | 2.17 ± 0.83 | 2.08 ± 0.51 | 0.563       | 0.237        |
| Femoral tunnel              | 3.21 ± 0.99 | 3.09 ± 0.79 | 2.76 ± 0.93 | 2.89 ± 0.65 | 0.978       | 0.524        |
| Drawn intra articular graft | 2.94 ± 0.95 | 3.03 ± 0.84 | 2.26 ± 0.70 | 2.46 ± 0.56 | 0.304       | 0.015        |

1<sup>ST</sup>  
**DOUBLE BLINDED  
RCT**

SEMI - T  
+  
ADJUSTABLE  
BUTTON  
=

**BETTER  
OUTCOMES**

**SIGNIFICANTLY** less **CLINICAL** donor  
site morbidity to 24 months!

Quicker hamstring recovery +  
**SIGNIFICANTLY** better hamstring  
early strength

MRI: Improved signal  
intensity/graft integration

**80% Risk Reduction for Re-Injury**



**PERTH  
SPORTS SURGERY  
FELLOWSHIP**



**ORTHOPAEDIC RESEARCH FOUNDATION  
WESTERN AUSTRALIA**



THE UNIVERSITY OF  
**WESTERN  
AUSTRALIA**

**THANK YOU**



**A/Prof Peter D'Alessandro**  
MBBS Hons. (UWA) FRACS FAOrthA  
*Sports Orthopaedic Surgeon*



[dr peterdalessandro](https://www.instagram.com/dr peterdalessandro)



**Associate Professor**  
*University of Western Australia*

**Chief Supervisor**  
*Perth Sports Surgery Fellowship*

**Director**  
*Orthopaedic Research Foundation  
of Western Australia*

**Chief, Sports Trauma Unit**  
*Fiona Stanley Fremantle  
Hospitals Group*