EXPLORING THE ASSOCIATION OF COL12A1, COL27A1 AND TNC VARIANTS WITH KNEE LAXITY

S Beckley, T Branch, R Dey, M Posthumus, AV September & M Collins

Normal knee laxity is a multifactorial phenotype

Normal knee laxity is a multifactorial phenotype

Aim of the study

Investigate whether types XII (*COL12A1* rs970547) and XXVII (*COL27A1* rs2567706, rs2241671 & rs2567705) collagen, or the Tenascin C (*TNC* rs1061494, rs2104772 & rs1138545) encoding genes are associated with the knee laxity measurements and computed knee ligament (*ACL*, *PCL*, *MCL*, *LCL*) length changes in the non-dominant and dominant legs.

Methods

Participants:

n=114

- Moderately active
- Apparently healthy
- Used uninjured knee data
- Self-reported European ancestry
- Consented
- Completed questionnaires
- Blood Donation

Knee laxity measurements	Knee Hyperextension: Goniometer
	Anterior-posterior knee laxity: KT-1000
Knee	External-internal rotational knee laxity: RKT device

Input RKT motion data into knee model to calculate difference btw min. & max. length of ACL, PCL, MCL and LCL bundles

Sex (% male)	56.6	
Age (years)	26.0 (24.0; 30.0)	
Height (cm)	175.0 (167.2; 182.0)	
Body mass (kg)	73.7 (61.2; 80.8)	
BMI (kg/m²)	23.7 (21.6; 25.5)	
Dominant Leg (% Right)	85.8	

Genetic Concepts

■ **Gene**: considered to be basic unit of inheritance. Most genes code for specific proteins, or segments of proteins. Eg. *COL12A1* encodes a chain of Type XII Collagen.

■ Variant (SNP): variation at a single position in a DNA sequence among individuals.

Genotype: allele inherited at a specific locus. Eg. CC, CT or TT

Gene variants of Interest

FINDING: COL12A1 and TNC variants were associated with larger rotation measurements and/or ligament length changes

	COL12A1 rs970547	TNC rs1061494	
	Dominant Leg		Non-Dominant Leg
External Laxity		CT & CC (C allele)	
Internal Laxity		CT & CC (C allele)	
Slack		CT & CC (C allele)	CT & CC (C allele)
MCL	AG & GG (G allele)	CT & CC (C allele)	
LCL		CT & CC (C allele)	
PCL		CT & CC (C allele)	

= associated with larger measurements

Multiple regression model: *TNC* variants and physical characteristics predicted external rotation, internal rotation & slack measurements in the dominant leg

Conclusions

- Variants in COL12A1 & TNC may play a role
 in regulating normal knee laxity
- Other factors such as sex, height and body
 mass also impact laxity
- Complex interactions exist between genetic variants and intrinsic and extrinsic factors and to modulating knee laxity
- Highlights potential mechanism these variants may influence risk of injury

Acknowledgements

