Environmental Impact of ACL Surgery

Volker Musahl, MD, Pittsburgh, PA UNITED STATES
UPMC, Pittsburgh, PA, UNITED STATES

Summary

ACLR has a substantial carbon footprint, which can meaningfully be reduced


Abstract

Background

The healthcare sector in the United States has increased its greenhouse gas emissions by 6% since 2010 and today has the highest per capita greenhouse gas emissions globally. Assessing the environmental impact and material use through the methods of life cycle assessment (LCA) and material flow analysis (MFA) of healthcare procedures, products, and processes can aid in developing impactful strategies for reductions. We conducted an LCA and an MFA on an ACL reconstruction (ACLR). PURPOSE: (1) What are the life cycle environmental impacts of ACLR? (2) What is the material flow and material circularity of ACLR? (3) What potential interventions would best address the life cycle environmental impacts and material circularity of ACLR? METHODS: First, we conducted an LCA with global warming potential measured in carbon dioxide equivalent (CO 2 eq), or carbon footprint. Second, we conducted an MFA of ACLR. To contextualize the MFA, we calculated the material circularity indicator (MCI) index. Following data collection, we conducted the LCA and the MFA and then calculated the MCI for a representation of a single ACLR. To identify strategies to reduce the environmental impact of ACLR, we modeled 11 possible sustainability interventions developed from prior work and compared those strategies against the impact of the baseline ACLR. RESULTS: The ACLR generated an estimated life cycle greenhouse gas emissions of 47 kg of CO 2 eq, which is analogous to driving a typical gasoline-fueled passenger vehicle for 120 miles. The total mass of all products for one ACLR was estimated at 12.73 kg, including 7.55 kg for disposable materials and 5.19 kg for reusable materials. Concerning material circularity, ACLR had a baseline MCI index of 0.3. Employing LCA for the carbon footprint and the MCI for 11 sustainability interventions indicated the potential to reduce greenhouse gas emissions by up to 42%, along with an increase in circularity of up to 0.8 per ACLR. Among the most impactful interventions are the reduction in the utilization of surgical pack products, reutilization of cotton towels and surgical gowns, maximization of energy efficiency, and increasing aluminum and paper recycling. CONCLUSION: ACLR has a substantial carbon footprint, which can meaningfully be reduced by creating a minimalist custom pack without material wastage, reusing cotton towels, and maximizing recycling. Combining LCA, MFA, and MCI can provide a thorough assessment of sustainability in orthopaedic surgery. CLINICAL RELEVANCE: Orthopaedic surgeons and staff can immediately reduce the environmental